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ABSTRACT

Identifying communities vulnerable to adverse health effects from exposure to wildfire
smoke may help prepare responses, increase the resilience to smoke and improve public
health outcomes during smoke days. We developed a Community Health-Vulnerability
Index (CHVI) based on factors known to increase the risks of health effects from air
pollution and wildfire smoke exposures. These factors included county prevalence rates
for asthma in children and adults, chronic obstructive pulmonary disease, hypertension,
diabetes, obesity, percent of population 65 years of age and older, and indicators of
socioeconomic status including poverty, education, income and unemployment. Using air
quality simulated for the period between 2008 and 2012 over the continental U.S. we also
characterized the population size at risk with respect to the level and duration of exposure
to fire-originated fine particulate matter (fire-PMz5) and CHVI1. We estimate that 10% of the
population (30.5 million) lived in the areas where the contribution of fire-PM; 5 to annual
average ambient PM;s was high (>1.5 pg/m3) and that 10.3 million individuals experienced
unhealthy air quality levels for more than 10 days due to smoke. Using CHVI we identified
the most vulnerable counties and determined that these communities experience more
smoke exposures in comparison to less vulnerable communities.
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56 INTRODUCTION

57  Exposure to wildfire smoke is a serious health risk which can disproportionally impact

58  sensitive groups. A number of studies have shown an association between smoke exposure
59  and worsening of respiratory symptoms, increased rates of cardiorespiratory emergency
60  visits, hospitalizations, and even death 112, Identifying communities vulnerable to adverse
61  health outcomes during smoke days can provide valuable information for local, state and
62  federal governments and non-governmental organizations to prioritize public health

63  actions and improve public health outcomes on fire-smoke days.

64  Among the pollutants found in smoke, fine particulate matter {PM;5) is of the highest

65  concern to health. In the most recent synthesis and evaluation of scientific literature on the
66  health effects of air pollution, the Integrated Science Assessment (ISA}, the U.S.

67  Environmental Protection Agency 13 concluded that the weight of scientific evidence

68  suggests a causal relationship between short- and long-term exposures and cardiovascular
69  effects and mortality, and a likely causal relationship with respiratory effects. [SAisa

70  comprehensive review of the health and ecological effects caused by air pollutants,

71  mandated by the Clean Air Act, and provides the scientific basis for review of the National
72  Ambient Air Quality Standards (NAAQS). Multiple studies demonstrate that the health

73  impacts from PM; s exposures are disproportionately shared by individuals in the sensitive
74  groups %15, The most sensitive groups include children, the aged, and pregnant women, as
75  well as those with a pre-existing cardiopulmonary disease. Individuals and communities of
76  lower socioeconomic status, and those with other pre-existing chronic inflammatory

77  conditions are also considered at higher risk. Distribution of sensitive populations defines
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the vulnerability to adverse health effects across communities and reducing impacts among
these populations is likely to bring the greatest public health burden benefit on smoke

days.

Population vulnerability to various natural hazards has been studied for decades, however
population vulnerability to smoke has not been well documented. Various aspects of
population vulnerability have been examined in the context of heat waves 16, famine,
seismic events, coastal and inland floods, sea level rise, and drought 17-20, Recent
assessments have also focused on identifying communities vulnerable to environmental
hazards exacerbated by climate change 192122, The purpose of assessing population
vulnerability is to determine the population at greatest risk to environmental hazards,
understand how communities respond and adapt and inform ways to mitigate the risk and
negative impacts 23. The communities that adapt to and recover after a disaster are those
that can better plan, prepare and respond to environmental hazards. The alarming trends
in the severity of wildland fires and growth of populations in the communities adjacent to
wildlands call for an improved understanding of which communities are the most

vulnerable to health impacts in order to improve public health response.

Here, we index community vulnerability to health effects of air pollution and wildfire smoke, based
on previously studied clinical and social risk-factors that were found to modify the association

between air pollution and adverse health outcomes. We then quantify population size at risk
with respect to the levels of the index and the level and duration of smoke exposure in the
recent past. To characterize smoke exposure in the recent past we simulated fire-
originating fine particulate matter (PM2s) over a five-year period (2008-2012) using a

chemical transport modeling system. The objective of this work is to demonstrate that
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101  community health vulnerability can be readily assessed using existing data and to provide
102  motivation as to why it may be necessary. Understanding where the most vulnerable

103  communities are found can be useful in developing outreach and education material.

104 METHODS AND DATA

105  Development of Community health-vulnerability Index

106  To develop an index of community health-vulnerability to the adverse health effects of

107  smoke exposures, we obtained specific socio-economic, demographic, and health outcome
108  measures previously determined in the literature to modify the risk of air pollution related
109  health outcomes 132425, More specifically, we obtained county prevalence for diabetes,
110  hypertension, adult and pediatric asthma, chronic obstructive pulmonary disease (COPD};
111 percent of population over 65 years of age, household income, education, rates of poverty,
112 and unemployment. In the PM;s- Integrated Science Assessment 13, both intrinsic (disease
113  status) and extrinsic factors (poverty]) are referred to as factors of susceptibility and

114  vulnerability respectively. However, because all of the factors are aggregated and not

115  individual data, we use the term ‘vulnerability’ throughout to define increased risk of

116  adverse health outcomes related to exposure. In all cases we used county level indicators
117  available across the continental U.S. because mitigation and adaptation plans are often
118  planned and executed at the county units. The list of variables used to profile vulnerability
119  is notintended to be exhaustive, but rather representative of the key clinical and social
120  conditions known to or suspected to increase the risk of adverse health outcomes

121  associated with fire- PM;s. Data sources and summary statistics are available in

122 Supplemental Material Table S1.
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Prevalence and incidence estimates of pediatric asthma (in children <18 years of age),
adult asthma (18+ years of age}, and adult COPD (30+) which includes chronic bronchitis
and emphysema, were obtained from the American Lung Association 26. American Lung
Association projected national and state prevalence of chronic lung disease to county
levels using the Behavioral Risk Factor Surveillance System 27 a phone based survey system
that has been collecting data continuously since 2004, and statistical methods developed by

US Census Bureau.

We used county level prevalence of hypertension to approximate prevalence of
cardiovascular disease. We used sex specific and age adjusted hypertension prevalence
data in adults over 30 years of age reported in Olives et al. 28. The study characterized the
relationship between self-reported and physical measurements of hypertension reported
in the National Health Examination and Nutrition Survey and used the relationship to
adjust BRFSS 2009 self-reported responses on hypertension prevalence (among all
respondents, percentage of those who reported systolic BP of at least 140mm Hg and/or
self-reported taking medication) for self-reporting bias. Prevalence for county-level age,
race, and sex adjusted estimates of diagnosed diabetes and obesity in adults (20 years of
age and older) were obtained from BRFSS 2012 from

http://www.cdc.gov/diabetes/atlas/countyrank/County_ListofIndicators.html.

Older adults and individuals of lower socio-economic status have been shown to be of
increased risk of cardiovascular and respiratory effects in both short-term exposure
studies and long-term exposure studies of air pollution 13. Similarly, several studies found

that socio-economic factors also modified health responses during the exposures to
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145  wildfire smoke 2930, Socioeconomic and demographic profiles used in this study were
146  taken from 2010 U.S. Census including population size by age group and gender, percent of
147  individuals living in poverty, percent of families living in poverty, medium household

148  income, and percent of unemployment.

149  We used principal components analysis and varimax rotation to reduce the number of

150  measures of vulnerability into a smaller number of independent components. All measures
151  of vulnerability were standardized prior to analysis. The first five components explained
152 84% of variance and were highly loaded on: 1) economic deprivation, 2} population of 65
153  years and older, 3) chronic adult respiratory conditions (COPD and asthma}, 4) pre-existing
154  conditions linked to hypertension, obesity and diabetes and 5) pediatric asthma

155  (Supplemental Material Table S2). All five components were positively associated with

156  primary measures, with the exception of median household income that was negatively
157  loaded on the first component measuring economic deprivation (Supplemental Material
158  Figure S11). The higher scores of all five components described the more vulnerable state
159  (more poverty, more individuals 65 years and older, more chronic respiratory and other
160  conditions). The five components were individually assigned quintile scores (1(the least
161  vulnerable) - 5 (the most vulnerable)). Quintile ranks for each component were added

162  together to create overall Community Health-Vulnerability Index (CHVI) with higher values

163  defining more vulnerable states.

164  Air Quality Simulations

165  We simulated daily air quality from 2008 to 2012 using the Community Multiscale Air

166  Quality (CMAQ) model with and without wildland and prescribed fires. The calculated
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difference between the two model runs represents the contribution of fire emissions to the
ambient PM; 5 levels (fire-PM35). Inputs to the model included gridded meteorological
fields, emissions data, and boundary conditions. For a regional or continental CMAQ model
simulation, the meteorological fields were provided by annual CONUS Weather Research
and Forecasting model (WRF) simulation that utilized 12 km horizontal grid spacing and
35 vertical layers of variable thickness extending up to 50 hPa, with the top of the lowest
model layer at approximately 20 m above ground level. Initial and boundary conditions for
WRF were provided by the North American Mesoscale Model available from the National
Centers for Environmental Prediction. The input emissions were based ona 12 km
national U.S. domain with speciation for the Carbon-Bond 05 chemical mechanism 32. The
emission inventory and ancillary files were based on the 2008 emissions modeling
platform for 2008, 2009, and 2010 and on the 2011 emission modeling platform for 2011
and 2012. The fire emissions were based on year-specific daily fire estimates using the
Hazard Mapping System fire detections and Sonoma Technology SMARTFIRE system
(version 2) (http://www.getbluesky.org/smartfire /docs/Raffuse 2007.pdf}. Plume rise
was calculated within the CMAQ model (in-line}. Biogenic emissions were processed in-
line in CMAQ and are based on the Biogenic Emissions Inventory System v3.14

(http://www.cmascenter. org).

CMAQ hourly output was averaged to 24 hours (midnight to midnight and adjusted for time
zone) for each grid point. From the gridded output we calculated area weighted averages
for daily and annual fire-PM3 5 daily averages for each county. We characterize smoke
exposure impacts with respect to the magnitude of exposure, frequency of days with

moderate air quality (15 -35 pg/m?3) and frequency of days with unhealthy levels of fire-

AQE Paragon Plus Eovironment
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196  PM2s5(>35 pg/m3) according to 2006 PM25 NAAQS. In terms of health risks, moderate air
191  quality days are interpreted as “Unhealthy for Unusually Sensitive Groups”; while

192  concentrations above 35.4 are interpreted as unhealthy for a broader population. More
193  specifically, 35.5-55.4 pg/ms3 is considered “Unhealthy for Sensitive Individuals”, 55.5-

194  150.4 pg/m3is considered “Unhealthy” for all individuals, 150.5-250.4 is “Very Unhealthy”,
195  and 2250.5 is “Hazardous”33. The two concentrations used in this analysis also correspond
196  to the annual (15 pg/ms3) and daily (35 pg/m3) 2006 PM25 NAAQS. Here we used the 2006
197  standard because it was the standard of the time period 2008 to 2012. In December, 2012
198  the NAAQS for PMzs was revised, and the annual standard was reduced to 12 pg/m? while
199  the daily standard 35 pg/m?3 was retained. We note, that we use these thresholds to define
200 moderate and unhealthy smoke days and not to define compliance to air quality

201  regulations. Finally, to calculate population size at risk we used age and gender specific

202  population size from 2010 U.S. Census.

203  Wildfire perimeters for each year in this five-year period used in the study were obtained
204  from USGS Geospatial Multi-Agency Coordination Group {GeoMAC) Wildland Fire Support
205  archives. The GeoMAC is an interactive mapping application that displays maps of current
206  fire locations and perimeters in the 48 contiguous states plus Alaska. This tool gathers fire
207  data from daily incidence reports and defines wildland fire perimeters based on incident
208 intelligence sources, GPS data, fixed wing aircraft sources, and satellite data. Fires not

209 reported to the incidence intelligence such as prescribed and agricultural fires are not

210  represented in the GeoMAC. The shape files and metadata are available at

211 http://rmesc.cr.usgs.gov/outgoing/GeoMAC /historic fire data/.
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RESULTS

Fire-PMz 5 patterns over the continental U.S., 2008-2012

In Figure 1, we mapped a geographic distribution of the estimated fire-PM; 5 daily average
with respect to: (a) the magnitude and (b) frequency of unhealthy smoke days. The maps
of fire-PM; 5 were also overlaid with the geocoded perimeters of the large wildfires from
GeoMAC archives. In combination with large fire parameters and with respect to the
magnitude of impact, two distinct and large spatial footprints are observed for fire-PM;s.
The first footprint was observed over the heavily forested, cold and temperate climates of
Northern California and Pacific Northwest, where high concentrations were co-located
with a dense distribution of fire perimeters. The second fire-PM; s footprint was observed
across the Southeast where vegetation includes hardwood, pine and southern mixed
forests, and wetlands. According to the National Emissions Inventory used in our CMAQ
simulations, a majority of the emissions in this region are attributed to smaller and more
localized wildland fires, which include agricultural burning and prescribed burning, and a
large number of smaller fires. Prescribed burning is done on an annual basis in early
months of the year and with the exception of drought years, the smoke footprintis
consistently present from year to year. Daily 24-average fire-PM s on smoke days was
substantially lower in the Southeast than in the Northwestern states with the exception of
days when large wildfires occurred (wildfire impacts can be observed from hourly
concentrations which are not shown here). Maps for individual years are given in the

Supplemental Materials Figures S1-510.

AQE Paragon Plus Eovironment
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234  Figure 1b demonstrates a notable difference between the Northwest and Southeast regions
235 infrequency by which estimated county-averaged fire-PM; 5 was above the level

236  considered “Unhealthy for Sensitive Individuals” (>35ug/m3). The largest impact was in
237  the Northwest region where a number of communities experienced 10 or more days of high
238  fire-PM;slevels. With the exception of Louisiana during winter 2008, the Southeast region
239  had a significantly lower number of unhealthy fire-PM; 5 days. In summary, both footprints
240  had a large number of moderate air quality days due to fire-PM; s, while days with fire-

241  PM;s exceeding the level considered unhealthy for wider population were mostly in the

242 Northwest region.

243

244 County Scale Health-Vulnerability and Smoke Impacts

245  The CHVI score ranged from 6 to 25, with a median score of 15, and 75, 90t, and 95t
246  percentile of 17, 19, and 20, respectively. The highest vulnerability is observed in the

247  counties along the western slope of the Appalachian Mountains, parts of the Midwest

248  (Kentucky, Missouri, Oklahoma and Kansas) and parts of the South (Arkansas, Mississippi,
249  Alabama, and Georgia) (Figure 2). Although none of the five indices dominated CHVI

250  overall, the regions of the highest vulnerability tend to have high index values on multiple
251  factors, particularly the prevalence of preexisting cardiovascular, metabolic diseases, and

252 childhood asthma as well as economic deprivation.

253  Table 1 shows the estimated population size at risk by factors of vulnerability. We estimate
254  that 30.5 million (13%) individuals, including 7.4 million children under 18, and 4 million

255  persons over 65 years of age lived in communities where the annual average of fire-PMz 5
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was estimated to be above 1.5 pg/m?3 (annual average). Among these communities, there
were 7.4 million individuals over 30 years of age with known hypertension, 2 million adults
with asthma and 0.7 million children with asthma, 1.3 million people with COPD, 7.0
million obese individuals, and 2.4 million individuals with diabetes. We note that
population size at risk was calculated separately for each county level factor of

vulnerability; thus individuals with co-morbidities are counted for each health outcome.

Table 2 shows the population size at risk by CHVI, annual mean fire-PM; 5 levels, and
frequency of moderate and unhealthy fire-PM; 5 days. We estimate that 82.4 million
individuals lived in counties with moderate air quality due to fire-PMy5 (15 - 35 pg/m3)
and 10.3 million individuals lived in the counties with unhealthy air quality levels (>35
pg/ms3) for more than 10 days between 2008 and 2012. Among the communities with the
highest annual fire-PMzs means (>1.5 pg/m3), 8.1 million (26.6%) lived in counties with
vulnerability index below the median (CHVI 6-15) while 22.4 million lived in the counties
with vulnerability above the median (73.4%, 36.1+24.6+7.4+5.3; CHVI (15-24] combined)
and 12.7% lived in the counties with high vulnerability (7.4%+5.3%; CHVI >19). In
contrast, across the nation approximately half of population (51.4%]) lived in counties
where CHVI is below median and half (49.6%) lived in the counties where CHVI was above

the median.

Over the time period considered, areas with the highest vulnerability were more likely to
experience unhealthy levels of fire-PM; s annual average (1.5,4.58]) then less vulnerable
populations (1.6/6.5*100 = 25% for CVHI (20,24] compared to 8.1/157.7%100 = 5% for

CVHI [6,15]). Similar was true for number of days with moderate fire-PM5 (15 - 35 pg/ms3)

AQE Paragon Plus Eovironment
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278  for 10+ days and for number of days with fire-PM;sabove 35ug/m3 for 5+ days (Table 2).
279  More specifically, among the counties with vulnerability index below the median, 25%

280  (39.5/157.5*100%) of population lived in places that experienced an excess of 10 days of
281 moderate air quality due to fire while among the counties with the highest vulnerability
282  (CHVI 21-24),41.5% (2.7/6.5*100%) of population experienced an excess of 10 days of
283  moderate air quality due to fire. A substantially smaller population size was impacted by a
284  large number of days with unhealthy air quality (>35 pg/m?3}; 10.7% of the population in
285  the counties with CHVI below the median and 15.2% of the population in the most

286  vulnerable counties experienced more than 5 days of unhealthy air quality (>35 pg/m?3).
287  However, 4.4% of the least vulnerable communities and only 2.1% of the most vulnerable

288 communities were impacted by 10 or more days of fire-PM; 5 above 35 ug/ms3.

289

290  DISCUSSION

291  In this study we constructed an index of population vulnerability to health impacts from
292  smoke exposure based on clinical and social factors known to modify the risk of adverse
293  health effects and estimated population size at risk with respect to the frequency and

294  magnitude of smoke exposure in a recent period. The modeling methods used in the study
295  estimate that between 2008 and 2012 population exposure to smoke in the continental U.S.
296  was extensive; 29.7% of the population lived in areas with moderate exposure (annual

297  average fire-PMy s between 0.75 and 1.5pg/m3) and another 10% lived in areas where the
298  contribution to annual ambient PM; s was high (>1.5 pg/m3). We identified the most

299  vulnerable U.S. counties and determined that vulnerable communities were more likely to
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experience high and frequent smoke exposure in comparison to less vulnerable
populations. The findings described in the study have potential implications for efficient
and effective allocation of limited resources for dissemination of public health messaging,

and land and fuel management to prevent large wildfires.

The constructed Community Health-Vulnerability Index incorporates disease prevalence,
age and socio-economic status of individuals in the community. The specific factors were
chosen based on published literature that demonstrates their role as risk factors for cardio-
respiratory effects of particles or wildfire smoke. Published research describes multiple
biological mechanisms by which air pollution causes cardio-respiratory effects including
oxidative stress, pulmonary and systemic inflammation, activation of pulmonary
nocioceptive receptors, and modulation of the autonomic nervous system (Brook et al.
2010). Therefore, individuals having chronic health conditions characterized in part by
pro-inflammatory states (e.g. asthma, COPD, diabetes, cardiovascular disease)} are
considered at higher risk 3*. Among the risk factors, preexisting cardiovascular disease is
one of the leading factors of increased health risks to air pollution effects 35>. We used
hypertension to approximate prevalence of cardiovascular disease because it is well
documented, the most prevalent cardiovascular condition, and is responsible for one in six
deaths among adults. Chronic metabolic and inflammatory health conditions such as
diabetes and obesity have been shown to increase the risk to air pollution impacts 36-38,
Children are considered more sensitive to impacts of air pollution because their lungs are
smaller, and their dose per body weight and lung surface areas exceed those of the adult

population.

AQE Paragon Plus Eovironment
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322  The majority of evidence for wildfire smoke effects are based on studies of exposure to
323  ambient air pollution 13 but there is also a growing number of fire-PM; 5 studies that

324  suggest consistency between respiratory effects within fire specific studies and in

325 comparison to studies of urban air pollution 2 3°. The effects of air pollution and wildfire
326  smoke exposure on adults with preexisting respiratory conditions such as asthma and

327  COPD are extensively documented in literature. These effects have also been noted in both
328  children with asthma and children without asthma > 49 and have been noted to be stronger
329 than in adults #1. Additionally, older adults have been shown to have an increased risk of
330 cardiovascular and respiratory effects in fire-PM3 5 exposure studies 374243, Apart from
331 the clinical characteristics discussed, low socioeconomic status has also been reported to
332  modify the risk of respiratory outcomes in response to large wildland fire smoke events 39,
333  We have previously shown that when considering external factors influencing health

334  (health behaviors, access and quality of clinical care, social and economic factors, and the
335 physical environments) socio-economic factors are strong contributors of differences in

336  risk for asthma and congestive heart failure resulting from exposure to wildfire smoke 2°.

337 Inthe development of the health-vulnerability index we restrict our attention to the key
338 clinical and social conditions that have been identified by the Integrated Science

339  Assessment as populations sensitive to adverse health effects following air pollution

340 exposure. Itis clear however, that these are not the only risk factors involved at the

341 individual level. Evidence for a role for genetics, epigenetics, diet, availability of green

342  space and behavior is emerging and it is likely that some of these will ultimately prove to
343  be strong predictors of PM; 5 associated health outcomes. As new risk factors are identified

344  the CHVI can be adapted to incorporate the new information. Additionally, a number of
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other extrinsic factors have been shown to identify social vulnerability to environmental
hazards such as heat waves, including occupation, employment, housing, built
environment, neighborhood deprivation, poor English skills and are likely to apply in
wildfire smoke situations 4447, When constructing indicators at the regional, state or local
levels, and particularly when considering decision making, it may be helpful and
advantageous to incorporate determinants of social vulnerability along with the indicators
of health vulnerability (e.g. built environment, landscape, social and physical connectivity,

existing air quality, etc) and examine sensitivity of the indicators.

Implications for Public Health Actions

Interventions and health-promoting behaviors can improve public health outcomes 48 49,
Many of the recommended measures including staying indoors during very unhealthy air
quality days, running air conditioning on recirculation mode, creating a clean room,
ensuring a supply of regular medication, etc. can reduce personal exposure and decrease
the health risks. However, during wildfire episodes, individuals do not perceive risks to
their health and become aware of them once smoke exposure is already occurring, when it
may be too late to take many of the recommended preventative measures. Smoke impacts
in the areas where wildfires are less common (eg. Southeast) can be a special concern
exactly because they are less frequent and the health risk awareness is not established at
the individual or community level. Prior knowledge about community health vulnerability
can help guide deliberate awareness building and outreach among the most sensitive
populations. However, identifying communities at the greatest risk from wildfire smoke is

currently based solely on the predicted risk of fire and we do not consider the composition
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367  of the communities. As such public health messaging and actions may not be appropriately

368  scaled to communities with high numbers of sensitive individuals.

369 Increased frequency of large wildland fires is anticipated to continue and have effects on
370  human health and environment 59-52, Fuel management activities, such as prescribed

371  burning, are a critically important component of the national strategy to improve ecological
372  diversity and decrease wildfires harmful to human health and have been examined with
373  respect to changes in frequency and area burned33-56, While such information provides
374  important insights for a broad risk-based management system for wildfire, the framework
375 does not consider the potential public health burden of smoke emissions or disparities in
376  sensitivity of the populations affected. Projecting community health-vulnerability under
377  different fire mitigation strategies, climate change scenarios, and population growth

378  projections may offer further refinement of such risk-based management approaches. In
379  projecting community health-vulnerability for a specific future scenario we recommend
380 using population-weighted exposures.

381

382  Limitations of the Study

383  We note some limitations to our analysis. To estimate smoke exposure at the national level
384  we use CMAQ model simulated with and without fires and attribute the difference in

385  estimated ambient PM;5 concentrations to large fires (mostly wild and prescribed). To

386  assess model performance, we matched CMAQ grid locations to the locations of

387  environmental monitors and compare predicted and observed values. We found the model

388  has a high bias at low PM; s concentrations suggesting that: (1) plumes are too dispersive,
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and/or (2} small fires have too high emissions in the simulation. The model also over
predicts PMz s (mainly OC, EC) during all seasons for fire events. Another limitation is that
only fire events that are part of the emission inventory have been evaluated. Any
misspecification of emissions in the inventory is not included in our analysis. An important
limitation to our simulation of fire-PM; 5 that affects air quality is that our modeling system
does not simulate the smoldering aspects of peat fires well which are common in the
Southeast and emit large quantities of particles and gasses. We note that as with all models
CMAQ results should be interpreted with caution because any combination of these factors
could lead to uncertainty and over or under prediction of estimated exposures. While
various aspects of CMAQ performance have been published in the literature 57, additional

factors could play role in the uncertainty specific to fire-PMzss.

Another limitation is the assumption that PM2 s from all sources is equally harmful to
health. The composition and toxicity of these particles varies with respect to the type of
fuel burned, conditions of burning and the age of the particles. Lower combustion
efficiency yields more volatile and organic compound in both particles and gases
(polynuclear aromatic hydrocarbons, oxygenated organics, and various gases) which are
harmful to human health. Toxicological studies also indicate that relative toxicity of
particles varies when examined per unit mass or total mass, and by chemical composition
of the particles. Fire-PMsand fire-PM1o collected during a peat fire in eastern North
Carolina in 2008 had very different targets of cellular toxicity that depended on the particle
mass of the smoke particles and the phase of the fire 58. Cardiovascular toxicity was the
dominant effect caused by ultrafine PM fraction collected during the active smoldering

phase of the fire while in vitro pulmonary inflammatory responses were the dominant
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412  effects of coarse fraction of PM. Smoldering fires, as seen in the peat fires across Southeast
413  U.S, Indonesia, and Boreal forest have also been hypothesized to carry higher risk for

414  cardiovascular Emergency Department visits as well 11.43, This could be due to lower

415  combustion efficiency and vegetation type that define chemical composition of particles,
416  such as the abundance polynuclear aromatic hydrocarbons which are carcinogenic and

417  particularly harmful to health 5°. However, a systematic review of published literature

418  suggests that there is no consistent relationship that identifies specific PM; 5 components
419  that may be unequivocally related to health outcomes 9.

420

421  The most significant limitation to this assessment of human vulnerability to health impacts
422  of smoke is the lack of a good measure of a community’s ability to adapt. While the factors
423  that define the vulnerability status certainly play role, other less quantifiable measures
424  including awareness, previous experience, outreach programs, engagement of public

425  health, and proximity to health care providers or facilities which can define human

426  responses. Gaither etal. 2011 examined spatial association between fire prone areas in the
427  Southeast and socially vulnerable ‘hot spots’ using proximity to wildland fire mitigation
428  programs as a measure of community’s ability to adopt. However, we did not find

429  equivalent measures of community responses specific to health responses.

430

431  Wildland fires have been an integral part of human history with clear benefit to the

432  management of fire hazards and to the ecologic diversity of ecosystems. However, recent
433  trends in very large wildfires, termed mega fires, have brought attention to the adverse

434  health effects of smoke exposure, the high cost of wildfire suppression and management,
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and the need to establish community-based adaptation plans. Employing the same
methodology used to determine social vulnerability to environmental hazards 23, we
provide a concept of mapping the vulnerability to health outcomes specific to smoke
exposure. Such maps can be helpful tools for public officials in preparation of smoke
adaptation plans for their communities and prioritization of communities for allocation of
resources by the local, state and federal governments. In the U.S. there are over 70,000
wildfires annually, impacting communities and regional air quality with varying frequency
and intensity and thus representing a challenge to building community resilience with
respect to fire smoke and public health guidance. Therefore, as a proof of concept, the
Community Health-Vulnerability Index offers a tool to help identify communities that have
the potential to benefit the most from mitigation strategies to minimize smoke exposure
for sensitive populations and to decrease the health and economic burden imposed on the
population by fire-PM25 The next step could include tailoring messages to community
needs and development of exposure mitigation strategies.
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466  TABLES
467
468  Table 1. Population size at risk summarized by annual average fire-PM;5(2008-2012}). We
469  used outcome specific prevalence rates by county. Population size is given in millions.
Adult Pediatric Hyper- Under 65 Total
Asthma  Asthma copb tensive Diabetes Obesity Poverty 18 Oir:: Population
PM, s
{pg/m3) 20.8 6.4 11.8 68.8 203 60.9 42.5 73.7 40.0 306.7
(0,0.15] 0.2 0.1 0.1 0.6 0.2 0.5 0.4 0.6 0.4 2.8
(0.15,0.75] 12.7 3.8 6.6 40.0 113 344 23.6 435 23.7 182.2
(0.75,1.5] 59 1.9 3.8 20.8 6.4 19.0 13.2 22.2 119 91.1
(1.5,4.58] 2.0 0.7 13 7.4 2.4 7.0 53 7.4 4.0 30.5
470
471
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Table 2. Population size at risk by Community Health-Vulnerability Index, annual mean

fire-PMzs, and frequency of unhealthy fire-PMz s days between 2008 and 2012. Population
size is given in millions (¥ % expressed conditional on the population in the right margin, *
expressed as % of the total population).
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CHVI Bins [6,15] (15,17] (17,19] (19,20 (20,24] Total
E [0,0.15] 2(72.3%) 0.7 (25.2%)  0.1(2.6%) 0 (0%) 0 (0%) 2.8 (0.9%)
T}
4
c (0.15,0.75] | 98.6(54.1%) 61.4(33.7%) 13.5(7.4%) 5.6(3.1%) 3.1(1.7%) | 182.2 (59.4%)
s 123
e (0.75,1.5] 49 (53.8%) 25.4 (27.8%) (13.5%) 2.7(3%)  1.8(2%) | 91.2(29.7%)
<
<
< (1.5,4.58] 8.1(26.6%)  11(36.1%) 7.5(24.6%) 2.3 (7.4%) 1.6 (5.3%) 30.5 (9.9%)
£
£ [1,5) 69.6 (63.1%) 29.9 (27.1%) 8(7.3%) 2.1(1.9%) 0.7(0.6%)| 110.4(36%)
5 9
[0]
Qv [5,10) 16.6 (31.2%) 23.5 (44.2%) 8.8 (16.6%) 2.1(4%)  2.1(4%) | 53.1(17.3%)
£ v 13.6
>0 i .
=2 [10,76] 39.5 (47.9%) 22.9 (27.8%) (16.4%)  3.8(4.6%) 2.7(3.3%)| 82.4(26.9%)
<
ER” [1,5) 28.5 (49%) 14.4(24.7%) 11(18.9%) 2.8 (4.9%) 1.4(2.5%) 58.2 (19%)
L%
(0]
o= [5,10) 9.9 (51.6%) 5.4 (28.2%) 2.2 (11.7%) 0.8 (4%) 0.9 (4.5%) 19.1 (6.2%)
ER
=]
z [10,55] 6.9(67%) 2.8(27.1%) 0.3(2.9%) 0.2(1.6%) 0.1(1.3%) 10.3 (3.4%)
33.4
Total 157.7 (51.4%) 98.5 (32.1%) (10.9%) 10.6(3.5%) 6.5(2.1%) | 306.7 (100%)
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480
481 FIGURES

482  Figure 1a} Annual average daily fire-PM, 5 footprint by counties of continental US and perimeters of
483  area burned by large fires in black {(GeoMAC) between 2008 and 2012.

Figure 1a
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484

485  Figure 1b) Number of days with fire-PM, s above 35 pg/m3 by counties of continental US and
486  perimeters of area burned by large fires in black (GeoMAC) between 2008 and 2012.

487
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Figure 1b
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489  Figure 2. National map of the Community health-vulnerability Index (CHVI}. The break points 15,
490 17,19, and 20 correspond to the 50th, 75th, 90th, and 95th percentile of CHVI scores respectively.

Figure 2
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